博客
关于我
Python案例实操——定义计算矩阵转置的函数
阅读量:636 次
发布时间:2019-03-14

本文共 1207 字,大约阅读时间需要 4 分钟。

定义计算矩阵转置的函数

以下是一些关于如何在 Python 中将矩阵转置的方法,步骤清晰且易于理解。

第一个示例:使用循环方法

首先,我们定义一个矩阵并使用循环方法进行转置。

matrix = [[1, 2, 3],          [4, 5, 6],          [7, 8, 9]]def printmatrix(m):    for row in m:        print(" ".join(map(str, row)))printmatrix(matrix)

输出如下:

1 2 34 5 67 8 9

接下来,我们将这个矩阵转置:

def transform(m):    if not m:        return []    rows = len(m)    cols = len(m[0])    transposed = [[] for _ in range(cols)]    for i in range(rows):        for j in range(cols):            transposed[j].append(m[i][j])    return transposedtransposed_matrix = transform(matrix)printmatrix(transposed_matrix)

输出如下:

1 4 72 5 83 6 9

第二个示例:使用zip函数

另一种方法是使用 Python 的 zip 函数来进行转置。

def transform(m):    return list(zip(*m))transposed_matrix = transform(matrix)printmatrix(transposed_matrix)

输出如下:

((1, 4, 7), (2, 5, 8), (3, 6, 9))

由于结果是元组,我们可以将其转换为列表:

transposed_matrix = [list(row) for row in transform(matrix)]printmatrix(transposed_matrix)

输出如下:

1 4 72 5 83 6 9

第三个示例:使用numpy模块

如果您需要更高效的解决方案,可以考虑使用 numpy 库。

import numpy as npdef transform(m):    return np.transpose(m).tolist()transposed_matrix = transform(matrix)printmatrix(transposed_matrix)

输出如下:

1 4 72 5 83 6 9

总结

通过以上方法,您可以轻松地将矩阵转置。无论选择哪种方法,关键在于理解每个步骤如何将列变为行。希望这些例子对您有所帮助!

转载地址:http://maloz.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_实际操作---大数据之Nifi工作笔记0020
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_实际操作_02---大数据之Nifi工作笔记0032
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_使用NIFI表达式语言_来获取自定义属性中的数据_NIFI表达式使用体验---大数据之Nifi工作笔记0024
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_内嵌ZK模式集群2_实际操作搭建NIFI内嵌模式集群---大数据之Nifi工作笔记0016
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_02---大数据之Nifi工作笔记0034
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>